Regularized Principal Component Analysis for Spatial Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized Principal Component Analysis for Spatial Data

Abstract: In many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at p locations with n repeated measurements. While principal component analysis (PCA) is commonly applied to find the patterns, the eigenimages produced from PCA may be noisy or exhibit patterns that are not physically meaningful when p is large relative ...

متن کامل

Regularized Principal Component Analysis ∗

Given a set of signals, a classical construction of an optimal truncatable basis for optimally representing the signals, is the principal component analysis (PCA for short) approach. When the information about the signals one would like to represent is a more general property, like smoothness, a different basis should be considered. One example is the Fourier basis which is optimal for represen...

متن کامل

Sparse Principal Component Analysis via Regularized Low Rank Matrix Approximation

Principal component analysis (PCA) is a widely used tool for data analysis and dimension reduction in applications throughout science and engineering. However, the principal components (PCs) can sometimes be difficult to interpret, because they are linear combinations of all the original variables. To facilitate interpretation, sparse PCA produces modified PCs with sparse loadings, i.e. loading...

متن کامل

Principal Component Analysis and Qualitative Spatial Reasoning

In this big data modern age, enormous size of data is a challenge for the computer algorithms as well as hardware because important information is hidden in the data. Principal Component Analysis (PCA) is used to transform the data so that meaningful information becomes explicit. The huge dimensional data can be approximated with a few dimensions. Qualitative Spatial Reasoning (QSR), spatial or...

متن کامل

Feature Dimension Reduction of Multisensor Data Fusion using Principal Component Fuzzy Analysis

These days, the most important areas of research in many different applications, with different tools, are focused on how to get awareness. One of the serious applications is the awareness of the behavior and activities of patients. The importance is due to the need of ubiquitous medical care for individuals. That the doctor knows the patient's physical condition, sometimes is very important. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Graphical Statistics

سال: 2017

ISSN: 1061-8600,1537-2715

DOI: 10.1080/10618600.2016.1157483